Exercise 11

Solve the initial-value problem.

$$
y^{\prime \prime}+6 y^{\prime}=0, \quad y(1)=3, \quad y^{\prime}(1)=12
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+6\left(r e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+6 r=0
$$

Solve for r.

$$
\begin{aligned}
& r(r+6)=0 \\
& r=\{-6,0\}
\end{aligned}
$$

Two solutions to the ODE are $e^{-6 x}$ and $e^{0}=1$. According to the principle of superposition, the general solution is a linear combination of these two.

$$
y(x)=C_{1} e^{-6 x}+C_{2}
$$

Differentiate it with respect to x.

$$
y^{\prime}(x)=-6 C_{1} e^{-6 x}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(1) & =C_{1} e^{-6}+C_{2}=3 \\
y^{\prime}(1) & =-6 C_{1} e^{-6}=12
\end{aligned}
$$

Solve the system.

$$
C_{1}=-2 e^{6} \quad C_{2}=5
$$

Therefore,

$$
\begin{aligned}
y(x) & =\left(-2 e^{6}\right) e^{-6 x}+5 \\
& =-2 e^{6(1-x)}+5
\end{aligned}
$$

Below is a plot of the solution versus x.

